M.Sc. Deepak Hanike Basavegowda
Abteilung: Agromechatronik
Mitarbeit in Forschungsprogrammen
Arbeitsgebiete
Präzisionslandwirtschaft; Remote Sensing; Deep Learning; Robotik
Projekte
- DAKIS-pro – Digital Agricultural Knowledge and Information System (DAKIS) - Digitale Wissens- und Informationsverarbeitung in der Landwirtschaft - professional Im Projekt DAKIS-pro wird ein automatisiertes Entscheidungsunterstützungssystem (EUS) entw…
- DAKIS – Agrarsysteme der Zukunft: DAKIS - Digitales Wissens- und Informationssystem für die Landwirtschaft, Teilprojekt H Die Vision, die DAKIS (Digital Agricultural Knowledge and Information System) zugrunde liegt, ist, dass räumlich sowie funktiona…
Veröffentlichungen
- Shamshiri, R.; Sturm, B.; Weltzien, C.; Fulton, J.; Khosla, R.; Schirrmann, M.; Raut, S.; Hanike Basavegowda, D.; Yamin, M.; Hameed, I. (2024): Digitalization of agriculture for sustainable crop production: a use-case review. Frontiers in Environmental Science. : p. 1-32. Online: https://doi.org/10.3389/fenvs.2024.1375193
- Hanike Basavegowda, D.; Schleip, I.; Mosebach, P.; Weltzien, C. (2024): Deep learning-based detection of indicator species for monitoring biodiversity in semi-natural grasslands. Environmental Science and Ecotechnology. (September): p. 100419. Online: https://doi.org/10.1016/j.ese.2024.100419
- Mouratiadou, I.; Lemke, N.; Chen, C.; Wartenberg, A.; Bloch, R.; Donat, M.; Gaiser, T.; Hanike Basavegowda, D.; Helming, K.; Hosseini Yekani, S.; Krull, M.; Lingemann, K.; Macpherson, J.; Melzer, M.; Nendel, C.; Piorr, A.; Shaaban, M.; Zander, P.; Weltzien, C.; Bellingrath-Kimura, S. (2023): The Digital Agricultural Knowledge and Information System (DAKIS): Employing digitalisation to encourage diversified and multifunctional agricultural systems. Environmental Science and Ecotechnology. (Ocotber): p. 100274. Online: https://doi.org/10.1016/j.ese.2023.100274
Weitere Veröffentlichungen
Behravan, Ali, Roman Obermaisser, Deepak Hanike Basavegowda, and Simon Meckel. "Automatic model-based fault detection and diagnosis using diagnostic directed acyclic graph for a demand-controlled ventilation and heating system in simulink." In 2018 Annual IEEE International Systems Conference (SysCon), pp. 1-7. IEEE, 2018.
Behravan, Ali, Ahlam Mallak, Roman Obermaisser, Deepak Hanike Basavegowda, Christian Weber, and Madjid Fathi. "Fault injection framework for fault diagnosis based on machine learning in heating and demand-controlled ventilation systems." In 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 0273-0279. IEEE, 2017.