Individualized Livestock Production

Photo: ATB

Prof. Dr. Marina Höhne

Head of Department

Department: Data Science in Bioeconomy

Telefon: +49 331 5699-902
Online:
opens LinkedIn opens Google Scholar

Research program


Committees and boards

  • Climate Change and AI in Brandenburg center
  • ELLIS Society, the European Laboratory for Learning and Intelligent Systems
  • Berlin AI Competence Center BIFOLD, the Berlin Institute for the Foundations of Learning and Data

Projects


Publications


Weitere Veröffentlichungen

  • Gautam, S., Höhne, M. M.-C., Hansen, S., Jenssen, R., & Kampffmeyer, M. (2022). Demonstrating The Risk of Imbalanced Datasets in Chest X-ray Image-based Diagnostics by Prototypical Relevance Propagation. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (pp. 1-5). IEEE
  • Hedström, A., Weber, L., Bareeva, D., Motzkus, F., Samek, W., Lapuschkin, S., and Höhne, M. M.-C. (2022). Quantus: an explainable AI toolkit for responsible evaluation of neural network explanations. arXiv preprint arXiv:2202.06861
  • Mieth, B., Rozier, A., Rodriguez, J. A., Höhne, M.M.-C., Görnitz, N., & Müller, K. R. (2021): DeepCOMBI: explainable artificial intelligence for the analysis and discovery in genome-wide association studies. NAR Genomics and Bioinformatics, 3(3), lqab065
  • Bykov, K., Deb, M., Grinwald, D., Müller, K.R. and Höhne, M.M.-C., 2022. DORA: Exploring outlier representations in Deep Neural Networks. arXiv preprint arXiv: 2206.04530
  • Bykov, K., Hedström, A., Nakajima, S., and Höhne, M.M.-C. (2021): NoiseGrad: enhancing explanations by introducing stochasticity to model weights. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 6, pp. 6132-6140)
  • Bykov, K., Höhne, M.M.-C., Creosteanu, A., Müller, K.-R., Klauschen, F., Nakajima, S., & Kloft, M. (2021). Explaining bayesian neural networks. arXiv preprint arXiv:2108.10346
  • Mieth, B., Hockley, J. R., Görnitz, N., Vidovic, M.M.-C., Müller, K. R., Gutteridge, A., and Ziemek, D. (2019): Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data. Scientific reports, 9(1), 1-14
  • Vidovic, M.M.-C., Kloft M., Müller K.-R., and Görnitz N., 2017. ML2motif – Reliable extraction of discriminative sequence motifs from learning machines. PloS one 12.3, e0174392
  • Vidovic M.M.-C., Görnitz N., Müller K.-R., and Kloft M., 2016. Feature importance measure for non-linear learning algorithms. arXiv preprint arXiv:1611.07567
  • Vidovic, M.M.-C., Hwang H.J., Amsüss S., Hahne J.M., Farina D., and Müller K.-R. (2016): Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24.9,  961-970
  • Vidovic, M.M.-C., Görnitz N., Müller K.-R., Rätsch G., and Kloft M. (2015): SVM2Motif Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor. PloS one  10.12, e0144782

Cookies

We use cookies. Some are required to offer you the best possible content and functions while others help us to anonymously analyze access to our website. (Matomo) Privacy policy

Required required

Necessary cookies are absolutely essential for the proper functioning of the website. This category only includes cookies that ensure basic functionalities and security features of the website. These cookies do not store any personal information.

Cookie Duration Description
PHPSESSID Session Stores your current session with reference to PHP applications, ensuring that all features of the site can be displayed properly. The cookie is deleted when the browser is closed.
bakery 24 hours Stores your cookie preferences.
fe_typo_user Session Is used to identify a session ID when logging into the TYPO3 frontend.
__Secure-typo3nonce_xxx Session Security-related. For internal use by TYPO3.
Analytics

With cookies in this category, we learn from visitors' behavior on our website and can make relevant information even more accessible.

Cookie Duration Description
_pk_id.xxx 13 months Matomo - User ID (for anonymous statistical analysis of visitor traffic; determines which user is being tracked)
_pk_ses.xxx 30 minutes Matomo - Session ID (for anonymous statistical analysis of visitor traffic; determines which session is being tracked)