News and press

Photo: ATB

Targeted plant protection saves resources and protects the environment

ATB scientists Dr. Michael Schirrmann and Prof. Dr.-Ing. Cornelia Weltzien (ATB) are presenting the projects (Foto: ATB)

June 24, 2016: The research project "Sensor based online detection of diseases in cereals - FungiDetect" started with the meeting of partners in Potsdam. The project is coordinated by ATB. It is funded by the Federal Ministry of Food and Agriculture under the initiative "Innovations in agricultural technology to increase resource efficiency (Big Data in agriculture)" with 1.1 Mio Euro. 

The focus of the now starting project is the development of a new sensor system that is able to detect in an early stage fungal diseases in cereals, especially yellow rust, in order to selectively treat the affected batches only. This will enable to significantly reduce the amount of pesticides applied - a contribution to more efficient use of resources and environmental protection. Fungicides are,  after herbicides, the most commonly used active agents in crop production.

The FungiDetect research team will merge diverse sensor based approaches. Sensors on carrier vehicles and copters will extensively collect data on the current status of plants.

For the first time, a sensor will collect information on punctual occurrence of a fungal infection beneath the leaf canopy. In cereals, the older, lower leaves are usually earlier and more affected than the younger, upper leaves. In order to successfully combat this infestation early detection is crucial to prevent a rapid spread of the fungal disease to the next higher levels of leaves and neighbour plants.

Den Pilzbefall in einem sehr frühen Stadium zu erkennen ermöglicht uns, mit minimaler Aufwandsmenge eine sehr effiziente Behandlung durchzuführen, ohne dass es zu Ertragseinbußen kommt“, beschreibt Prof. Dr.-Ing. Cornelia Weltzien, Leiterin der Abteilung Technik im Pflanzenbau am ATB, die Erwartungen an das Projekt. „Auf diese Weise können wir Ressourcen im Pflanzenbau bedarfsgerecht und gezielt einsetzen.“ Der zielgerichtete, sparsame Einsatz von Pflanzenschutzmitteln mit Hilfe von Sensoren wird seit Jahren am ATB intensiv beforscht.

Partner im Forschungsverbund sind neben dem koordinierenden Leibniz-Institut für Agrartechnik Potsdam-Bornim die Firmen Agri Con GmbH Jahna und TOSS Intelligente Messtechnik und Automatisierung GmbH Potsdam. Gemeinsam werden sie in den kommenden drei Jahren eine praxistaugliche Lösung erarbeiten, die dem Landwirt bei einer eventuell notwendigen Fungizidspritzung Entscheidungsunterstützung bietet. 

Das Projekt „Sensorgestützte Online-Detektion von Krankheiten im Getreide - FungiDetect“ wird vom Bundesministerium für Ernährung und Landwirtschaft (BMEL) im Rahmen der  Initiative „Innovationen in der Agrartechnik zur Steigerung der Ressourceneffizienz (Big Data in der Landwirtschaft)“ mit rund 1,1 Mio. Euro gefördert. Projektträger ist die Bundesanstalt für Landwirtschaft und Ernährung (BLE).

Kontakt:  

PD Dr. habil. Karl-Heinz Dammer - Projektkoordinator FungiDetect
kdammer@atb-potsdam.de 

Helene Foltan  –  Presse- und Öffentlichkeitsarbeit
hfoltan@atb-potsdam.de

Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V.
Max-Eyth-Allee 100, 14469 Potsdam

Cookies

We use cookies. Some are required to offer you the best possible content and functions while others help us to anonymously analyze access to our website. (Matomo) Privacy policy

Required required

Necessary cookies are absolutely essential for the proper functioning of the website. This category only includes cookies that ensure basic functionalities and security features of the website. These cookies do not store any personal information.

Cookie Duration Description
PHPSESSID Session Stores your current session with reference to PHP applications, ensuring that all features of the site can be displayed properly. The cookie is deleted when the browser is closed.
bakery 24 hours Stores your cookie preferences.
fe_typo_user Session Is used to identify a session ID when logging into the TYPO3 frontend.
__Secure-typo3nonce_xxx Session Security-related. For internal use by TYPO3.
Analytics

With cookies in this category, we learn from visitors' behavior on our website and can make relevant information even more accessible.

Cookie Duration Description
_pk_id.xxx 13 months Matomo - User ID (for anonymous statistical analysis of visitor traffic; determines which user is being tracked)
_pk_ses.xxx 30 minutes Matomo - Session ID (for anonymous statistical analysis of visitor traffic; determines which session is being tracked)