Dr. Hamed Tavakoli
Department: Agromechatronics
Research programs
Research areas
- Sensor-based Technologies in Precision Agriculture
- Proximal soil sensing
- Design and development of sensor systems for plant and soil monitoring
- Optical spectroscopy
Projects
- digiMan – Weiterentwicklung und Praxiserprobung digitaler Humus- und Nährstoff-Managementsysteme in Zukunftsbetrieben zum Klimaschutz Das Verbundvorhaben digiMan zielt darauf ab, digitale Humus- und Nährstoffmanagementsysteme auf modernen Landwirtsch…
- I4S 3 – Integriertes System zum ortsspezifischen Management der Bodenfruchtbarkeit - Teilprojekt A - Entwicklung und Test der Sensorplattformen Ziel der dritten Phase des Projekts I4S ist die Entwicklung eines sensorgestützten Systems, das insbesonde…
Publications
- Tavakoli, H.; Correa Reyes, J.; Vogel, S.; Oertel, M.; Zimne, M.; Heisig, M.; Harder, A.; Wruck, R.; Pätzold, S.; Leenen, M.; Gebbers, R. (2024): The RapidMapper: State-of-the-art in mobile proximal soil sensing based on a novel multi-sensor platform. Computers and Electronics in Agriculture. (November): p. 109443. Online: https://www.sciencedirect.com/science/article/pii/S0168169924008342
- Schmidinger, J.; Barkov, V.; Tavakoli, H.; Correa Reyes, J.; Ostermann, M.; Atzmüller, M.; Gebbers, R.; Vogel, S. (2024): Which and how many soil sensors are ideal to predict key soil properties: A case study with seven sensors. Geoderma. (October): p. 117017. Online: https://doi.org/10.1016/j.geoderma.2024.117017
- Tavakoli, H.; Correa Reyes, J.; Sabetizadeh, M.; Vogel, S. (2023): Predicting key soil properties from Vis-NIR spectra by applying dual-wavelength indices transformations and stacking machine learning approaches. Soil and Tillage Research. (May): p. 105684. Online: https://doi.org/10.1016/j.still.2023.105684
- Alirezazadeh, P.; Rahimi-Ajdadi, F.; Abbaspour-Gilandeh, Y.; Landwehr, N.; Tavakoli, H. (2021): Improved digital image-based assessment of soil aggregate size by applying convolutional neural networks. Computers and Electronics in Agriculture. (December): p. 106499. Online: https://doi.org/10.1016/j.compag.2021.106499
- Tavakoli, H.; Alirezazadeh, P.; Hedayatipour, A.; Banijamali Nasib, A.; Landwehr, N. (2021): Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks. Computers and Electronics in Agriculture. (February): p. 105935. Online: https://doi.org/10.1016/j.compag.2020.105935
- Tavakoli, H.; Mohtasebi, S.; Alimardani, R.; Gebbers, R. (2014): Evaluation of different sensing approaches concerning to nondestructive estimation of leaf area index (LAI) for winter wheat. International Journal on Smart Sensing and Intelligent Systems. (1 March): p. 337-359. Online: http://www.s2is.org/Issues/v7/n1/papers/paper18.pdf
Weitere Veröffentlichungen
Yaghoubi, M. and Tavakoli, H. 2022. Mechanical Design of Machine Elements by Graphical Methods. Springer, Cham, Hardcover ISBN: 978-3-031-04328-4, eBook ISBN: 978-3-031-04329-1, DOI: https://doi.org/10.1007/978-3-031-04329-1.
Lashgari, M., Imanmehr, A. and Tavakoli, H. 2020. Fusion of acoustic sensing and deep learning techniques for apple mealiness detection. Journal of Food Science and Technology, 57, 2233–2240. https://doi.org/10.1007/s13197-020-04259-y
Tavakoli, H. and Gebbers, R. 2019. Assessing Nitrogen and water status of winter wheat using a digital camera. Computers and Electronics in Agriculture, 157: 558‒567.
Tavakoli, H., Mohtasebi, S.S. and Gebbers, R. 2015. An image processing based approach for detection of nitrogen status in winter wheat under mild drought stress. 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment, 17-20 September 2015; Kavala, Greece.
Gebbers, R., Tavakoli, H. and Herbst, R. 2013. Crop sensor readings in winter wheat as affected by nitrogen and water supply. 9th European Conference on Precision Agriculture, 7-11 July 2013; Lleida, Catalonia, Spain.
Komarizadeh, M.H., Ghazavi, M.A., Alizadeh, M.R., Zareiforush, H., Tavakoli, H. and Masoomi, M. 2011. Power Requirements for Paddy (Oriza sativa L.) Grains Handling with Screw Augers. Applied Engineering in Agriculture (ASABE Publication), 28(1): 73‒78.
Zareiforoush, H., Komarizadeh, M.H., Alizadeh, M.R., Masoumi, M. and Tavakoli, H. 2010. Performance evaluation of screw augers in paddy grains handling. International Agrophysics, 24(4): 389‒391.
Tavakoli, H., Mohtasebi, S.S., Jafari, A. and Nazari Galedar, M. 2009. Some engineering properties of barley straw. Applied Engineering in Agriculture (ASABE Publication), 25(4): 627‒633.
Curriculum Vitae
Hamed Tavakoli has studied Agricultural Engineering (Biosystems Engineering). He obtained his Ph.D with dissertation title of "Non-destructive detection of nitrogen status under drought stress in winter wheat during the growing season using active and passive crop sensors” from the Department of Agricultural Machinery Engineering, University of Tehran, Iran, in 2014.
From 2014 to 2019 he worked as an assistant professor at the Department of Mechanical Engineering of Biosystems, Arak University, Iran.
He has been working as a research scientist at the Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB) under the I4S project since February 2020.
His main research interest is precision agriculture.